
CLR and CBB Management for Hawaii

Melissa A. Johnson USDA-ARS, DKI US Pacific Basin Agricultural Research Service

Coffee leaf rust (CLR, Hemileia vastatrix)

- Pathogenic fungus that attacks coffee leaves
- Widely recognized as most serious disease of coffee worldwide
- Found on Maui in late 2020, rapidly spread to other islands
- Spread by wind, people, animals, vehicles
- High severity results in leaf drop, reduced yields, branch death
- Favored by warm temperatures, high humidity, moisture on leaf surface

CLR in Hawaii

- Low infection in Spring (Mar-June)
- Infection begins to increase in July
- High infection during harvest and post-harvest (Aug-Feb)
- CLR is easiest to manage if kept below 5% incidence

CLR Management Strategy

- •Prune
- •Feed
- •Scout
- •Spray

Holualoa 2019

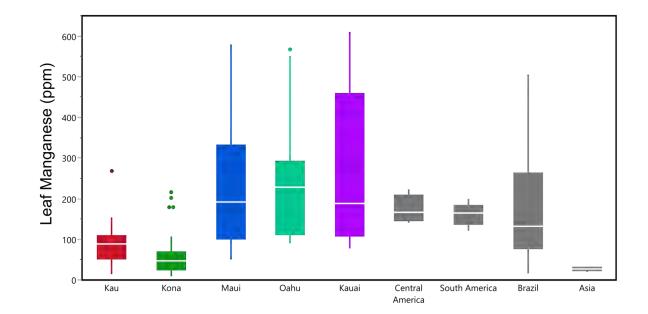
Holualoa 2021

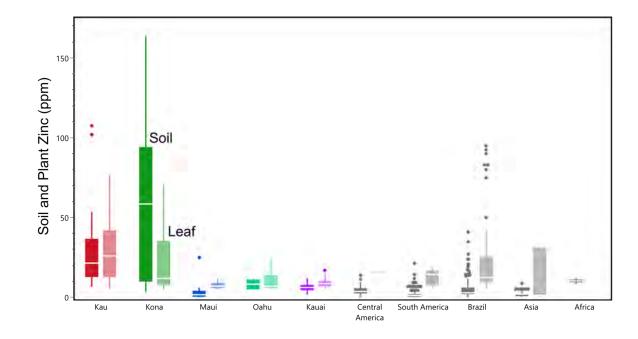
Pruning for CLR

• Kona style has highest CLR infection

- If using Kona style or BF, limit to 3-5 verticals to promote air-flow, minimize self-shading, and allow better spray coverage
- Remove suckers frequently they tend to get infected quickly & serve as source of infection
- Annual prune can be combined with Oxidate (applied before or after pruning)

Aristizábal et al. In Prep.


Feed

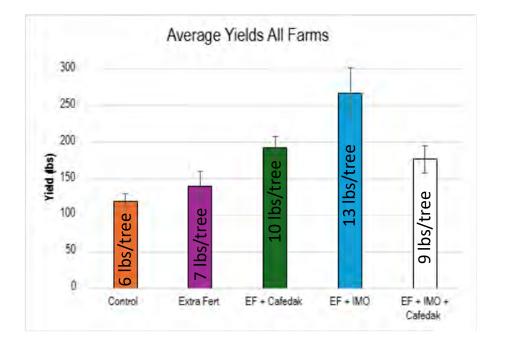

- Start season with soil and tissue sampling for nutrient analysis
- Soil and tissue results need to be used together to determine fertilizer plan
 - Each will provide different clues about soil/plant health
 - Compare with optimal values to determine how to correct any imbalances
- Granular fertilizer can be applied in smaller amounts more frequently
 - 4-6x per season
- Foliar fertilizer can increase micronutrients
 - Cafedak, Tropical Metasolate

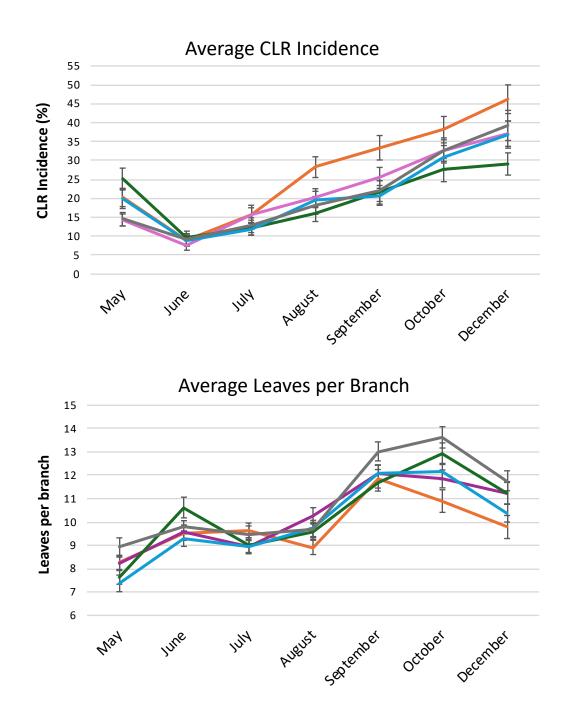
Statewide Nutrient Survey

- 160 coffee farms
- Nutrient profile of Hawaii Island is distinct from other islands and other coffee growing regions
- High levels of some macronutrients in soil (P, Ca)
- Low levels of some micronutrients in leaves (Fe, Mn)
- Results will inform development of location-specific fertilizer recommendations

Can improved plant/soil health reduce impacts of CLR?

OUNDATION


- 4 organic Kona coffee farms
- Emphasis on sustainable and locally available inputs
- Indigenous microorganisms cultivated through KNF
- 5 treatments
 - Control = granular fish fert 8-8-6 NPK (2x)
 - Extra Fert = granular fish fert (6x)
 - EF + Cafedak = fish fert (6x) + Cafedak foliar
 - EF + IMO = fish fert (6x) + IMO (soil & foliar)
 - EF + Cafedak + IMO = fish fert (6x) + IMO + Cafedak
- CLR incidence, leaf retention, yield

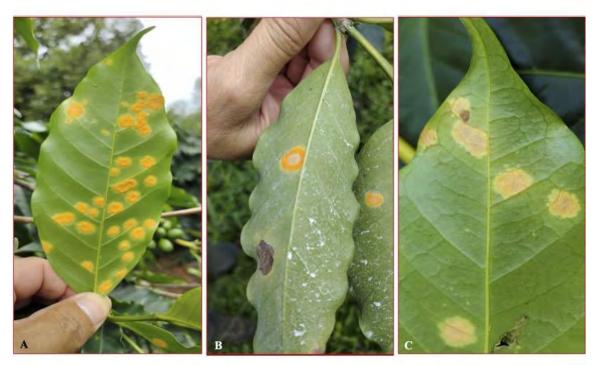


Preliminary Results

- Significantly higher CLR in control plots; lowest in EF + CafeDak plots
- Significantly lower leaf retention in control
- Yields increased with extra fertilizer and foliar inputs

Scout

- When: Year-round with emphasis from Mar-July
- How: 20-25 trees (1 branch per tree) per 2-2.5 acres; CLR leaves/total leaves x 100 = CLR incidence (%)
- With this method, CLR can be detected at very low levels (<1%)
- Scout to check efficacy of sprays
 - if effective, lesions should appear dried up ~1-2 weeks post-spray



Spray

- Timing: start early in the season to protect new leaf growth
- Rate: use medium rate when range is given
- Coverage: underside of leaves must be sprayed for contact fungicides
- Scout to check efficacy of sprays
 - lesions should appear dried up after 1-2 weeks

The key to successful control of CLR is in **preventatively** applying fungicides.

Infection levels above 30% will be difficult to control

Not sprayed

Copper spray

Priaxor spray

Fungicides field tested for CLR in Hawaii

Product

Serenade ASO Double Nickel Kocide 3000 Badge X2 ProBlad Verde Priaxor Xemium

Active Ingredient

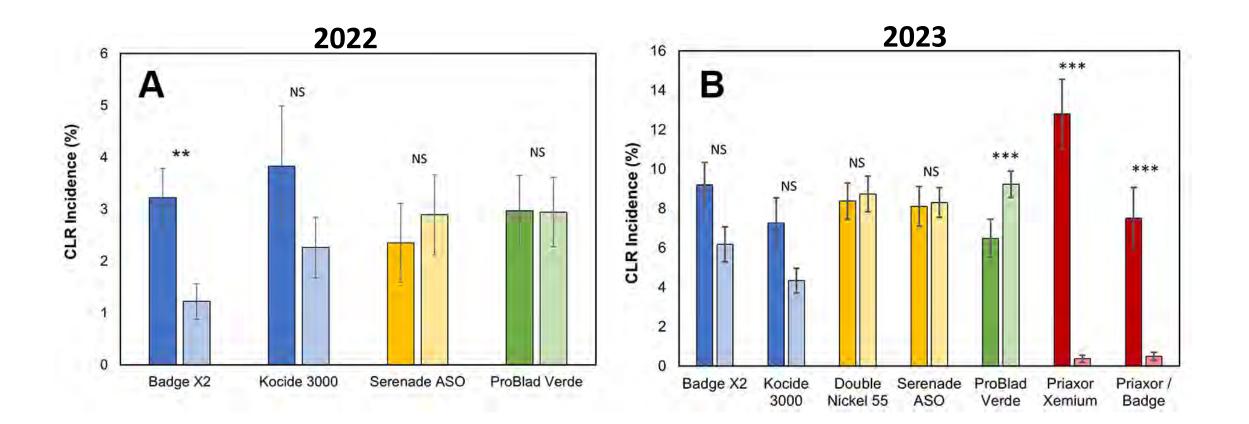
Bacillus subtilis

Bacillus amyloliquefaciens

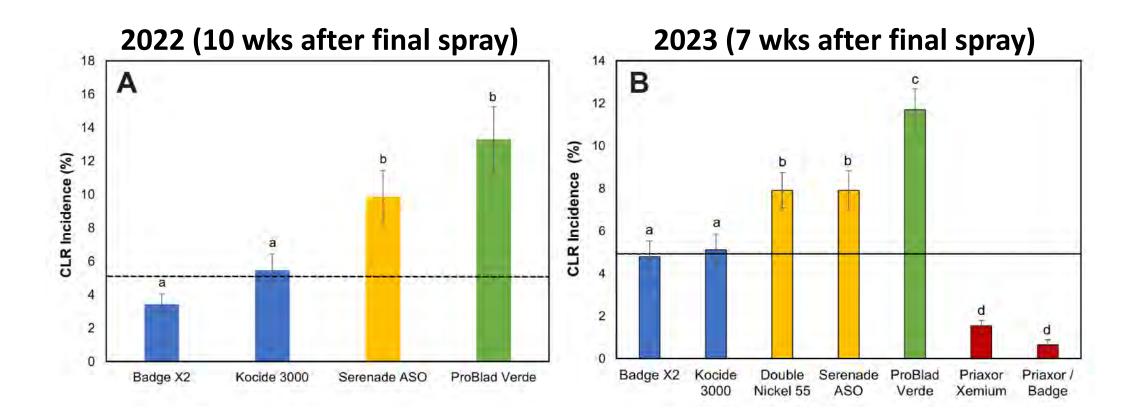
Copper hydroxide

Copper hydroxide + copper oxychloride

Lupinus albus


Fluxapyroxad + pyraclostrobin

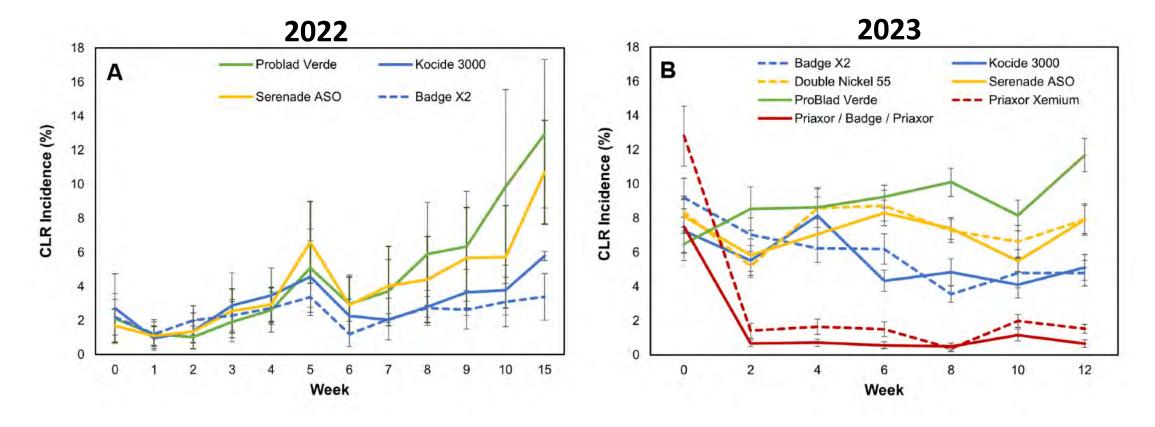
Aristizábal, Maeda, Matsumoto, Johnson. In Review.


Fungicide Efficacy

Pre-application (Week 0, dark colors) vs. post-application (Week 6 or 8, light colors)

Duration of Protection

Comparison of fungicide treatments 7-10 weeks after the final application

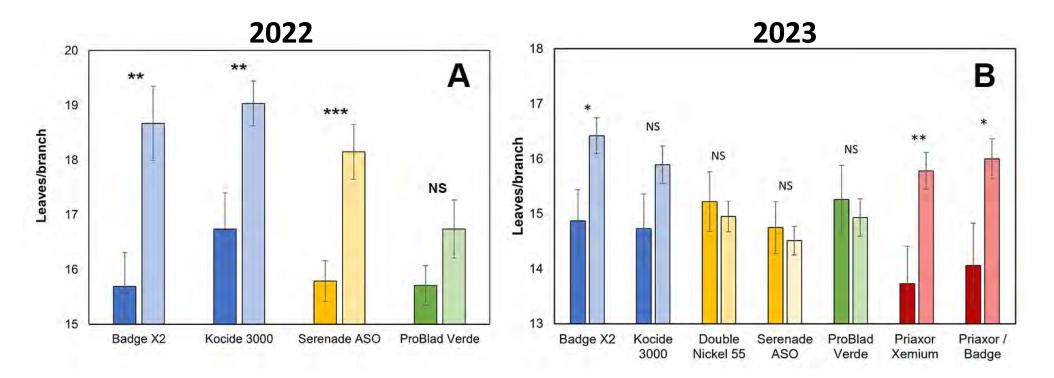


Priaxor: <2% incidence through Week 12

Badge X2 and Kocide: ≤5%

Serenade and Double Nickel: 8-10%

ProBlad Verde: 11-13%

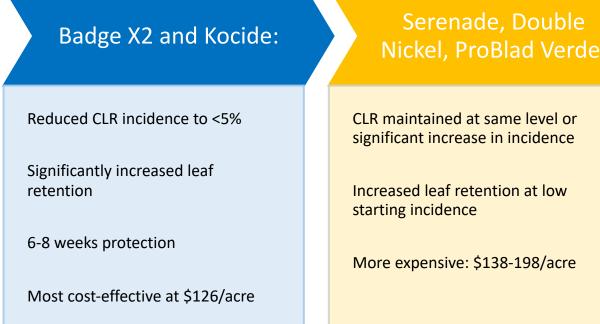


Protection Over Time

Leaf Retention

2022: Significantly higher leaf retention in copper and Serenade treatments 2023: Significantly higher leaf retention in Badge and Priaxor treatments

Note: 2022 had lower average starting incidence (3%) relative to 2023 (9%)


Spray Costs

- Kocide & Badge: \$126/acre
- Serenade ASO: \$138/acre
- Priaxor Xemium: \$140/acre
- Double Nickel: \$168/acre
- ProBlad Verde: \$198/acre
- Priaxor (2x)/Badge: \$399/acre

Product	Kocide 3000	Badge X2	Serenade ASO	Double Nickel	ProBlad Verde	Priaxor Xemium	Priaxor/ Badgeª					
Rate/acre	1.5 lb	1.5 lb	64 Fl oz	1.5 lb	45 Fl oz	7 Fl oz	14 Fl oz + 1.5 lb					
Cost/ acre	18	18	30	60	90	38	94					
Farm	Cost (US\$) per acre											
1	106	106	118	148	178	126	358					
2	131	131	143	173	203	NA	NA					
3	121	121	133	163	193	141	403					
4	116	116	128	158	188	136	388					
5	103	103	115	145	175	123	349					
6	156	156	168	198	228	NA	NA					
7	141	141	153	183	213	161	463					
8	131	131	143	173	203	151	433					
Average	125.63	125.63	137.63	167.63	197.63	139.67	399.00					

Summary

Nickel, ProBlad Verde:

Priaxor (1 spray or 3 spray combo)

╋

0

Both treatments (1 or 3 sprays) significantly reduced incidence (<2%)

Both increased leaf retention

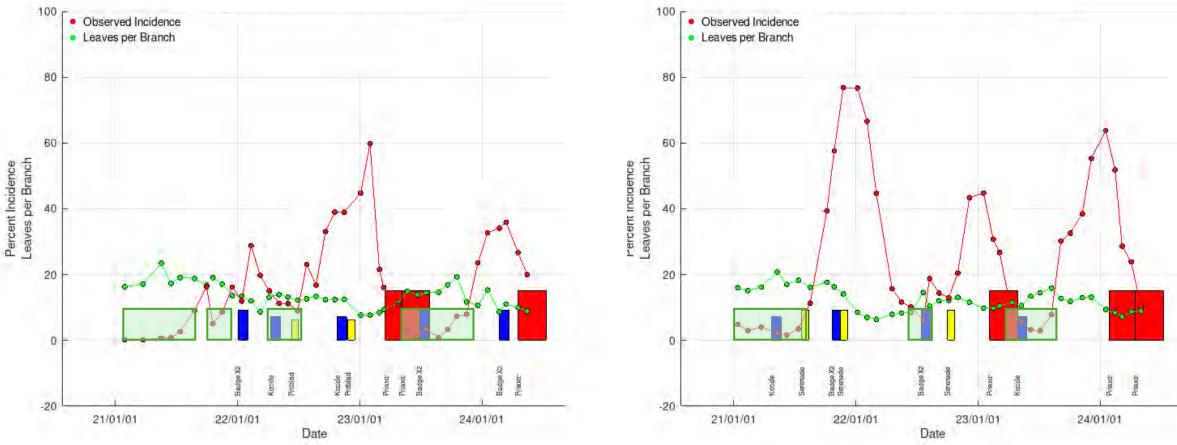
10-12 weeks protection

1 spray (\$140/acre) is more economical and just as effective as 3 sprays (\$399/acre)

Managing CLR with Fungicides

- Even when resistant varieties are available, fungicides are an important part of an IPM strategy to manage CLR
- In many growing regions around the world, preventative and curative fungicides are rotated to manage CLR
- 2 applications of a curative, and 2-4 applications of a preventative are rotated to prevent resistance
 - Colombia: 2-6 sprays
 - Brazil: 2-4 sprays
 - Kenya: 4 sprays

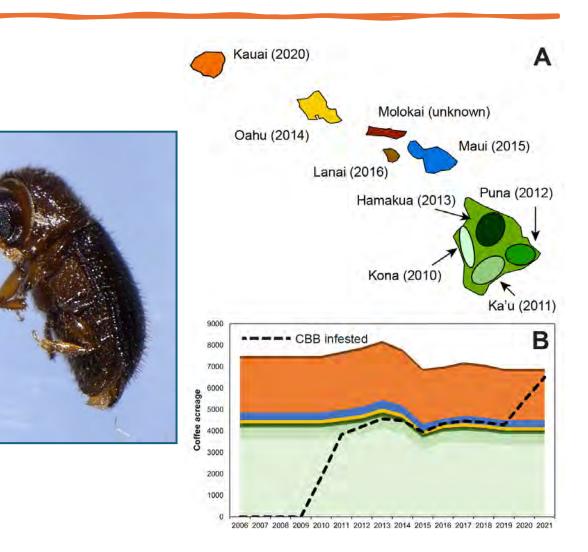
Example Rotation Programs


			Flowering	S		l	Berry Growth				Harvest		
Farm	CLR	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Туре	Incidence												
Conventional	Low			Priaxor		Badge		Priaxor		Badge			
	(<5%)												
Conventional	Medium			Priaxor		Badge		Priaxor		Badge		Serenade	
	(5-9%)												
Conventional	High	OxiDate	Priaxor		Badge		Priaxor		Badge		Serenade		
	(10-20%)												
Organic/	Low			Badge		Serenade	Badge		Serenade	Badge			
Year-round	(<10%)												
Organic/	Medium	OxiDate		Badge		Serenade	Badge	Serenade	Badge		Serenade		
Year-round	(10-19%)												
Organic/	High	OxiDate	Badge	Serenade		Badge	Serenade	OxiDate		Badge		Serenade	
Year-round	(20-30%)												

Conventional Farms: 4-6 sprays Organic or Year-round Farms: 5-8 sprays

Kona low elevation

sprays done = 10
effective = 4



Kona high elevation

sprays done = 10
effective = 4

Coffee Berry Borer (CBB)

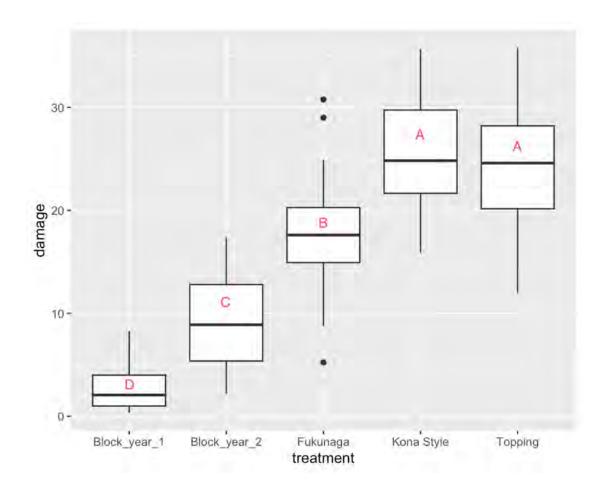
- Most serious pest of coffee worldwide
- First detected in Hawaii in 2010
- Challenges to implementing IPM:
 - Coffee landscape is variable
 - Cultural practices vary among farms
 - Production and labor costs are high
 - Severe labor shortage

CBB Management Strategy

PruneScout

•Spray

Sanitation



Pruning for CBB

Bean Damage

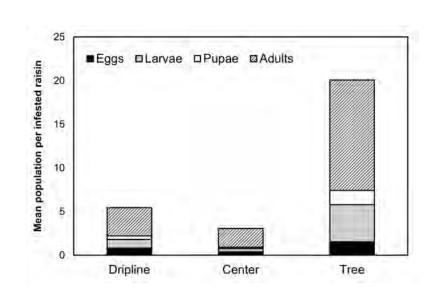
- Kona style = 25%
- Topping/umbrella = 24%
- Beaumont-Fukunaga = 17%
- Block-stump (yr 2) = 9%
- Block-stump (yr 1) = 3%

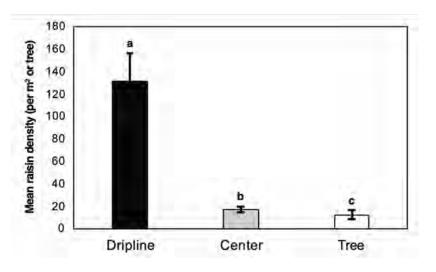
Aristizábal, Johnson, & Wright, In Prep.

Scout

- Informs best times to spray
- Start in March
- Alcohol-baited traps
 - Look for increased flight activity
- Berry infestation
 - Look for CBB in AB position

CBB Spray Calendar

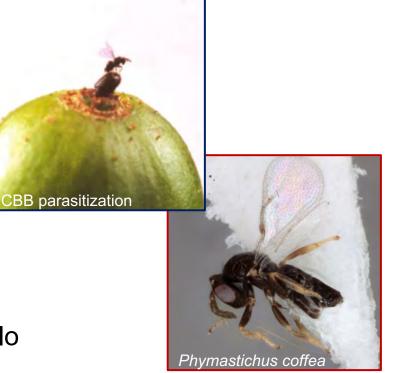

- Based on combined dataset for trap catch, infestation, CBB position (AB), and fruit production.
- Low, medium, high and critical refer to spray priority.


		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Kona Low	<1300 ft	Medium	High	Critical	High	Medium	Medium	High	Low	Low	Low
Kona Mid	1300-2000 ft	Medium	High	Critical	High	Low	Low	Low	Medium	Low	Low
Kona High	>2000 ft	Low	Medium	High	Critical	Low	Low	Low	Low	Low	Low
Ka'u Low	<1300 ft	Medium	High	Critical	High	Medium	Medium	Medium	Medium	Medium	Low
Ka'u Mid	1300-2000 ft	Medium	High	Medium	High	Medium	High	Low	Low	Low	Low
Ka'u High	>2000 ft	Low	Low	Low	Medium	Medium	Medium	Medium	Low	Low	Low

- In general, the number of sprays needed to control CBB decreases with increasing elevation
- Kona: 4–7 sprays optimal for low-elevation farms, 3–5 sprays for mid-elevation farms, and 2–3 sprays for high-elevation farms
- The optimal spray window for controlling CBB in Ka'u is slightly longer relative to Kona, reflecting the yearround season

Sanitation

- Early-season sanitation picks
- Frequent & efficient harvesting
- End of season strip-pick
 - ~92,000 CBB/acre in tree raisins
- Removal of ground raisins
 - ~96,000 CBB/acre in ground raisins
- High density trapping in postharvest (10-12 traps/acre)



CBB Biocontrol

- Parasitoid *Phymastichus coffea*
- Native to Kenya
- Tiny wasp ~ 1 mm in length
- Attacks CBB when in AB position
- Mass rearing underway at USDA-ARS Hilo

Acknowledgements

- MAHALO to the all the coffee growers for your continued support and collaboration
- Lab team: Colby Maeda, Jared Nishimoto, Karma Kissinger, Jessica George, Taya Brown, Frank Linam
- Administrative support: Suzanne Shriner (SHAC)
- Funding: USDA NIFA Specialty Crops Research Initiative, USDA-ARS Areawide grant

Contact: melissa.johnson@usda.gov

